Born expansion and Fréchet derivatives in nonlinear Diffuse Optical Tomography

نویسندگان

  • Kiwoon Kwon
  • Birsen Yazici
چکیده

The nonlinear Diffuse Optical Tomography (DOT) problem involves the inversion of the associated coefficient-to-measurement operator, which maps the spatially varying optical coefficients of turbid medium to the boundary measurements. The inversion of the coefficient-to-measurement operator is approximated by using the Fréchet derivative of the operator. In this work, we first analyze the Born expansion, show the conditions which ensure the existence and convergence of the Born expansion, and compute the error in the mth order Born approximation. Then, we derive the mth order Fréchet derivatives of the coefficient-to-measurement operator using the relationship between the Fréchet derivatives and the Born expansion. © 2010 Published by Elsevier Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Second-Order Born Approximation in Diffuse Optical Tomography

Diffuse optical tomography is used to find the optical parameters of a turbidmediumwith infrared red light. The problem is mathematically formulated as a nonlinear problem to find the solution for the diffusion operator mapping the optical coefficients to the photon density distribution on the boundary of the region of interest, which is also represented by the Born expansion with respect to th...

متن کامل

Uniqueness, Born Approximation, and Numerical Methods for Diffuse Optical Tomography

Diffuse optical tomogrpahy (DOT) is to find optical coefficients of tissue using near infrared light. DOT as an inverse problem is described and the studies about unique determination of optical coefficients are summarized. If a priori information of the optical coefficient is known, DOT is reformulated to find a perturbation of the optical coefficients inverting the Born expansion which is an ...

متن کامل

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography

In frequency-domain optical diffusion imaging, the magnitude and the phase of modulated light propagated through a highly scattering medium are used to reconstruct an image of the scattering and absorption coefficients in the medium. Although current reconstruction algorithms have been applied with some success, there are opportunities for improving both the accuracy of the reconstructions and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010